Part Number Hot Search : 
C4813 PMB2306 5710DN 10100C BUV61 AT5562 ILX3232 T520AE
Product Description
Full Text Search
 

To Download FSCQ1465RT Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 www.fairchildsemi.com
FSCQ-Series
FSCQ0565RT / FSCQ0765RT / FSCQ0965RT / FSCQ1265RT FSCQ1465RT / FSCQ1565RT / FSCQ1565RP
Green Mode Fairchild Power Switch (FPSTM)
Features
* Optimized for Quasi-Resonant Converter (QRC) * Advanced Burst-Mode Operation for under 1W Standby Power Consumption * Pulse-by-Pulse Current Limit * Over Load Protection (OLP) - Auto Restart * Over Voltage Protection (OVP) - Auto Restart * Abnormal Over Current Protection (AOCP) - Latch * Internal Thermal Shutdown (TSD) - Latch * Under Voltage Lock Out (UVLO) with Hysteresis * Low Startup Current (typical : 25uA) * Internal High Voltage SenseFET * Built-in Soft Start (20ms) * Extended Quasi-Resonant Switching
230VAC 15%(2) Open Frame 70W 100 W 130 W 170 W 190 W 210 W 250 W
(1)
OUTPUT POWER TABLE(3)
PRODUCT FSCQ0565RT FSCQ0765RT FSCQ0965RT FSCQ1265RT FSCQ1465RT FSCQ1565RT FSCQ1565RP 85-265VAC Open Frame(1) 60 W 85 W 110 W 140 W 160 W 170 W 210 W
Table 1. Maximum Output Power
Applications
* CTV * Audio Amplifier
Related Application Notes
* AN4146 - Design Guidelines for Quasi-Resonant Converters Using FSCQ-Series Fairchild Power Switch. * AN4140 - Transformer Design Consideration for Off-Line Flyback Converters Using Fairchild Power Switch.
Notes: 1. Maximum practical continuous power in an open frame design at 50C ambient. 2. 230 VAC or 100/115 VAC with doubler. 3. The junction temperature can limit the maximum output power.
Typical Circuit
Vo
Description
In general, a Quasi-Resonant Converter (QRC) shows lower EMI and higher power conversion efficiency compared to conventional hard-switched converter with a fixed switching frequency. Therefore, a QRC is well suited for noisesensitive applications, such as color TV and audio. Each product in the FSCQ-Series contains an integrated Pulse Width Modulation (PWM) controller and a SenseFET, and is specifically designed for quasi-resonant off-line Switch Mode Power Supplies (SMPS) with minimal external components. The PWM controller includes an integrated fixed frequency oscillator, under voltage lockout, leading edge blanking (LEB), optimized gate driver, internal soft start, temperature-compensated precise current sources for a loop compensation, and self protection circuitry. Compared with a discrete MOSFET and PWM controller solution, the FSCQSeries can reduce total cost, component count, size, and weight, while simultaneously increasing efficiency, productivity, and system reliability. These devices provide a basic platform that is well suited for cost-effective designs of quasi-resonant switching flyback converters.
FPSTM is a trademark of Fairchild Semiconductor Corporation. (c)2005 Fairchild Semiconductor Corporation
AC IN
Drain FSCQ-Series
PWM
Sync VFB GND
Vcc
Figure 1. Typical Flyback Application
Rev.1.1.0
FSCQ-SERIES
Internal Block Diagram
Sync 5
+
Vcc 3
Quasi-Resonant (QR) Switching Controller
+
Drain 1
Threshold
-
fs
-
9V/15V
Soft Start
4.6V/2.6V : Normal QR 3.0V/1.8V : Extended QR
Vcc good Auxiliary Vref Normal Operation
VBurst
Burst Mode Controller
Normal Operation Vref IBFB Vref IFB Burst Switching Vref IB
OSC
Main Bias
Internal Bias
Vcc
VFB 4
Idelay
PWM
S Q
2.5R R
R
Q
Gate Driver
LEB 600ns VSD Sync Vovp Vcc good
(Vcc = 9V) S Q Q R Q Q R S
AOCP 2 GND Vocp Power Off Reset (Vcc = 6V) TSD
Figure 2. Functional Block Diagram of FSCQ-Series
2
FSCQ-SERIES
Pin Definitions
Pin Number 1 2 3 Pin Name Drain GND Vcc Pin Function Description High voltage power SenseFET drain connection. This pin is the control ground and the SenseFET source. This pin is the positive supply input. This pin provides internal operating current for both start-up and steady-state operation. This pin is internally connected to the inverting input of the PWM comparator. The collector of an opto-coupler is typically tied to this pin. For stable operation, a capacitor should be placed between this pin and GND. If the voltage of this pin reaches 7.5V, the over load protection triggers, which results in the FPS shutting down. This pin is internally connected to the sync detect comparator for quasiresonant switching. In normal quasi-resonant operation, the threshold of the sync comparator is 4.6V/2.6V. Whereas, the sync threshold is changed to 3.0V/1.8V in an extended quasi-resonant operation.
4
Vfb
5
Sync
Pin Configuration
TO-220F-5L
5.Sync 4.Vfb 3.Vcc 2.GND 1.Drain
TO-3PF-7L
5.Sync 4.Vfb 3.Vcc 2.GND 1.Drain
Figure 3. Pin Configuration (Top View)
3
FSCQ-SERIES
Absolute Maximum Ratings
(Ta=25C, unless otherwise specified) Parameter Drain Pin Voltage Supply Voltage Analog Input Voltage Range Symbol VDS VCC Vsync VFB
FSCQ0565RT FSCQ0765RT FSCQ0965RT
(1)
Value 650 20 -0.3 to 13V -0.3 to VCC 11.2 15.2 16.4 21.2 22 26.4 33.2 2.8 3.8 4.1 5.3 5.5 6.6 8.3 5 7 7.6 11 12 13.3 15 1.7 2.4 2.6 3.4 3.5 4.4 5.5 400 570 630 950 1000 1050 1050
Unit V V V V
Drain Current Pulsed
IDM
FSCQ1265RT FSCQ1465RT FSCQ1565RT FSCQ1565RP FSCQ0565RT FSCQ0765RT FSCQ0965RT
A
Continuous Drain Current(Tc=25C) (Tc : Case Back Surface Temperature)
ID
FSCQ1265RT FSCQ1465RT FSCQ1565RT FSCQ1565RP FSCQ0565RT FSCQ0765RT FSCQ0965RT
A (rms)
Continuous Drain Current * (TDL=25C) (TDL :Drain Lead Temperature)
ID *
FSCQ1265RT FSCQ1465RT FSCQ1565RT FSCQ1565RP FSCQ0565RT FSCQ0765RT FSCQ0965RT
A (rms)
Continuous Drain Current (TC=100C)
ID
FSCQ1265RT FSCQ1465RT FSCQ1565RT FSCQ1565RP FSCQ0565RT FSCQ0765RT FSCQ0965RT
A (rms)
Single-Pulsed Avalanche Energy
(2)
EAS
FSCQ1265RT FSCQ1465RT FSCQ1565RT FSCQ1565RP
mJ
4
FSCQ-SERIES
FSCQ0565RT FSCQ0765RT FSCQ0965RT
38 45 49 50 60 75 98 +150 -25 to +85 -55 to +150 2.0 (GND-Vfb=1.7kV) 300 (GND-Vfb=170V) C C C kV V W
Total Power Dissipation (Tc=25C with Infinite Heat Sink)
PD
FSCQ1265RT FSCQ1465RT FSCQ1565RT FSCQ1565RP
Operating Junction Temperature Operating Ambient Temperature Storage Temperature Range ESD Capability, HBM Model (All pins except Vfb) ESD Capability, Machine Model (All pins except Vfb)
TJ TA TSTG
-
Notes: 1. Repetitive rating: Pulse width limited by maximum junction temperature 2. L = 15mH, starting Tj = 25C, These parameters, although guaranteed at the design, are not tested in mass production.
Thermal Impedance
(Ta=25C unless otherwise specified) Parameter Symbol
FSCQ0565RT FSCQ0765RT FSCQ0965RT
Value 3.29 2.60 2.55 2.50 2.10 2.00 1.28
Unit
Junction to Case Thermal Impedance
JC
FSCQ1265RT FSCQ1465RT FSCQ1565RT FSCQ1565RP
C/W
5
FSCQ-SERIES
Electrical Characteristics (SenseFET Part)
(Ta=25C unless otherwise specified) Parameter Drain-Source Breakdown Voltage Zero Gate Voltage Drain Current Symbol BVDSS IDSS
FSCQ0565RT FSCQ0765RT FSCQ0965RT
Condition VGS = 0V, ID = 250A VDS = 650V,VGS = 0V VGS = 10V, ID = 1A VGS = 10V, ID = 1A VGS = 10V, ID = 1A VGS = 10V, ID = 1A VGS = 10V, ID = 1A
Min. 650 -
Typ. Max. 1.76 1.4 1.0 0.75 0.7 0.53 0.53 1080 1415 1750 2400 2400 3050 3050 90 100 130 175 185 220 220 250 2.2 1.6 1.2 0.9 0.8 0.7 0.7 -
Unit V A

Drain-Source ON-State Resistance
RDS(ON) FSCQ1265RT VGS = 10V, ID = 1A
FSCQ1465RT FSCQ1565RT
FSCQ1565RP VGS = 10V, ID = 1A FSCQ0565RT FSCQ0765RT FSCQ0965RT
Input Capacitance
CISS
VGS = 0V, VDS = 25V, FSCQ1265RT f = 1MHz
FSCQ1465RT FSCQ1565RT FSCQ1565RP FSCQ0565RT FSCQ0765RT FSCQ0965RT
pF
Output Capacitance
COSS
VGS = 0V, VDS = 25V, FSCQ1265RT f = 1MHz
FSCQ1465RT FSCQ1565RT FSCQ1565RP
pF
6
FSCQ-SERIES
Electrical Characteristics (Continued)
(Ta=25C unless otherwise specified) Parameter CONTROL SECTION Switching Frequency Switching Frequency Variation Feedback Source Current Maximum Duty Cycle Minimum Duty Cycle UVLO Threshold Voltage Soft Start Time
(1) (1)
Symbol FOSC FOSC IFB DMAX DMIN VSTART VSTOP TSS VBEN IBFB TBS TBH VSD IDELAY VOVP
(1)
Condition VFB = 5V, VCC = 18V -25C Ta 85C VFB = 0.8V, VCC = 18V VFB = 5V, VCC = 18V VFB = 0V, VCC = 18V VFB=1V VFB=1V VFB = 0V VFB = 0.9V, Duty =50% VFB = 0.9V -> 0V VCC = 18V VFB = 5V, VCC = 18V VFB = 3V VCC = 18V -
Min. Typ. Max. Unit 18 0 0.5 92 14 8 18 0.25 60 1.2 1.2 7.0 4 11 0.9 140 20 5 0.65 95 0 15 9 20 0.40 100 1.4 1.4 7.5 5 12 1.0 22 10 0.8 98 16 10 22 0.55 140 1.6 1.6 8.0 6 13 1.1 kHz % mA % % V V ms V uA ms ms V A V V C
BURST MODE SECTION Burst Mode Enable Feedback Voltage Burst Mode Feedback Source Current Burst Mode Switching Time Burst Mode Hold Time PROTECTION SECTION Shutdown Feedback Voltage Shutdown Delay Current Over Voltage Protection Over Current Latch Voltage Thermal Shutdown Temp (2)
VOCL TSD
Note: 1. These parameters, although guaranteed, are tested only in EDS (wafer test) process. 2. These parameters, although guaranteed at the design, are not tested in mass production.
7
FSCQ-SERIES
Electrical Characteristics (Continued)
(Ta=25C unless otherwise specified) Parameter Sync SECTION Sync Threshold in Normal QR (H) Sync Threshold in Normal QR (L) Sync Threshold in Extended QR (H) Sync Threshold in Extended QR (L) Extended QR Enable Frequency Extended QR Disable Frequency TOTAL DEVICE SECTION Operating Supply Current (1)
FSCQ0565RT FSCQ0765RT FSCQ0965RT
Symbol VSH1 VSL1 VSH2 VSL2 FSYH FSYL
Condition
Min. Typ. Max. 4.2 2.3 2.7 1.6 4.6 2.6 3.0 1.8 90 45 5.0 2.9 3.3 2.0 -
Unit V V V V kHz kHz
VCC = 18V, VFB = 5V
VFB = 5V VFB = GND VCC = VSTART-0.1V VCC = VSTOP-0.1V 3.08 4.4 5.28 VCC = 18V, VFB = 5V 6.16 7.04 7.04 0.45 0.65 0.6 0.6 -
4 4 6 6 7 7 7 0.25 25 50 3.5 5 6.0 7 8.0 8 0.65 0.9 0.9 1.2 0.9 1 1
6 6 8 8 9 9 9 0.50 50 100 3.92 5.6 6.72 7.84 8.96 8.96 0.85 1.15 1.2 1.6 1.2 A A mA uA uA mA
- In Normal Operation
IOP
FSCQ1265RT FSCQ1465RT FSCQ1565RT FSCQ1565RP
- In Burst Mode (Non-switching) Startup Current Sustain Latch Current
(3)
IOB ISTART ISN
FSCQ0565RT FSCQ0765RT FSCQ0965RT
CURRENT SENSE SECTION
Maximum Current Limit
(2)
ILIM
FSCQ1265RT FSCQ1465RT FSCQ1565RT FSCQ1565RP FSCQ0565RT FSCQ0765RT FSCQ0965RT
10.12 11.5 12.88
Burst Peak Current
IBUR(pk) FSCQ1265RT VCC = 18V, VFB = Pulse 0.8
FSCQ1465RT FSCQ1565RT FSCQ1565RP
Note: 1. This parameter is the current flowing in the control IC. 2. These parameters indicate inductor current. 3. These parameters, although guaranteed, are tested only in EDS (wafer test) process.
8
FSCQ-SERIES
Electrical Characteristics
Operating Supply Current
1.2
Burst-mode Supply Current( Non-Switching)
1.4
Normalized to 25
Normalized to 25
0 50 100 150
1.2
1.0
1.0
0.8
0.8 -50
0.6 -50
0
50
100
150
Temp[ ]
Temp[ ]
Start-Up Current
1.4
Start Threshold Voltage
1.10
Normalized to 25
1.2
Normalized to 25
1.05
1.0
1.00
0.8
0.95
0.6
-50
0
50 Temp[]
100
150
0.90 -50
0
50
100
150
Temp[]
Stop Threshold Voltage
1.10
1.10
Initial Frequency
Normalized to 25
1.05
Normalized to 25
1.05
1.00
1.00
0.95
0.95
0.90 -50
0
50
100
150
0.90 -50
0
50
100
150
Temp[]
Temp[]
9
FSCQ-SERIES
Electrical Characteristics
Maximum Duty Cycle
1.10
Over Voltage Protection
1.10
Normalized to 25
1.05
Normalized to 25
0 50 100 150
1.05
1.00
1.00
0.95
0.95
0.90 -50
0.90 -50
0
50
100
150
Temp[]
Temp[]
Shutdown Delay Current
1.2
Shutdown Feedback Voltage
1.10
Normalized to 25
1.1
Normalized to 25
0 50 100 150
1.05
1.0
1.00
0.9
0.95
0.8 -50
0.90 -50
0
50
100
150
Temp[]
Temp[]
Feedback Source Current
1.2
Burst_mode Feedback Source Current
1.2
Normalized to 25
0 50 Temp[ ] 100 150
Normalized to 25
1.1
1.1
1.0
1.0
0.9
0.9
0.8 -50
0.8 -50
0
50
100
150
Temp[]
10
FSCQ-SERIES
Electrical Characteristics
Feedback Offset Voltage
1.4
Burst_Mode Enable Feedback Voltage
1.4
Normalized to 25
Normalized to 25
1.2
1.2
1.0
1.0
0.8
0.8
0.6 -50
0
Temp[ ]
50
100
150
0.6 -50
0
50
100
150
Temp[]
Sync. Threshold in Normal QR(H)
1.10
1.10
Sync. Threshold in Normal QR(L)
Normalized to 25
1.05
Normalized to 25
1.05
1.00
1.00
0.95
0.95
0.90 -50
0
50
100
150
0.90 -50
0
50
100
150
Temp[]
Temp[]
Sync. Threshold in Extended QR(H)
1.10
Sync. Threshold in Extended QR(L)
1.10
Normalized to 25
1.05
Normalized to 25
0 50 100 150
1.05
1.00
1.00
0.95
0.95
0.90 -50
0.90 -50
0
50
100
150
Temp[]
Temp[ ]
11
FSCQ-SERIES
Electrical Characteristics
Extended QR Enable Freqency
1.10
1 .1 0
E x ten d ed Q R D isa b le F req u en c y
Normalized to 25
1.05 1.00 0.95 0.90 -50
Normalized to 25
1 .0 5
1 .0 0
0 .9 5
0
50
100
150
0 .9 0 -5 0
0
50
100
150
Temp[]
T em p [ ]
1 .1 0
P u lse-b y-p u lse C u rren t L im it
Normalized to 25
1 .0 5
1 .0 0
0 .9 5
0 .9 0 -5 0
0
50
100
150
T em p [ ]
12
FSCQ-SERIES
Functional Description
1. Startup: Figure 4 shows the typical startup circuit and the transformer auxiliary winding for the FSCQ-Series. Before the FSCQ-Series begins switching, it consumes only startup current (typically 25uA). The current supplied from the AC line charges the external capacitor (Ca1) that is connected to the Vcc pin. When Vcc reaches the start voltage of 15V (VSTART), the FSCQ-Series begins switching, and its current consumption increases to IOP. Then, the FSCQSeries continues its normal switching operation and the power required for the FSCQ-Series is supplied from the transformer auxiliary winding, unless Vcc drops below the stop voltage of 9V (VSTOP). To guarantee the stable operation of the control IC, Vcc has under voltage lockout (UVLO) with 6V hysteresis. Figure 5 shows the relationship between the operating supply current of the FSCQ-Series and the supply voltage (Vcc).
The minimum average of the current supplied from the AC is given by
V start 1 2 V ac = ----------------------------- - ------------- --------2 R str
min
I sup
avg
where Vacmin is the minimum input voltage, Vstart is the FSCQ-Series start voltage (15V), and Rstr is the startup resistor. The startup resistor should be chosen so that Isupavg is larger than the maximum startup current (50uA). Once the resistor value is determined, the maximum loss in the startup resistor is obtained as
) + V start 2 2 V start V ac 1 - ( V ac Loss = --------- -------------------------------------------------- - ----------------------------------------------------- R str 2
max 2 2 max
where Vacmax is the maximum input voltage. The startup resistor should have properly-rated dissipation wattage.
C DC
1N4007 AC line (V acmin - V acmax ) Rstr Da Isup
Vcc
2. Synchronization: The FSCQ-Series employs a quasiresonant switching technique to minimize the switching noise and loss. In this technique, a capacitor (Cr) is added between the MOSFET drain and the source as shown in Figure 6. The basic waveforms of the quasi-resonant converter are shown in Figure 7. The external capacitor lowers the rising slope of the drain voltage to reduce the EMI caused when the MOSFET turns off. To minimize the MOSFET's switching loss, the MOSFET should be turned on when the drain voltage reaches its minimum value as shown in Figure 7.
FSCQ-Series
C a1 C a2
+ V DC Np Ns Lm Vo
C DC
Figure 4. Startup circuit
Drain Cr Ids GND + V ds -
Icc
IOP Value
FSCQ0565RT : 4mA (Typ.) FSCQ0765RT : 4mA (Typ.) FSCQ0965RT : 6mA (Typ.) FSCQ1265RT : 6mA (Typ.) FSCQ1465RT : 7mA (Typ.) FSCQ1565RT : 7mA (Typ.) FSCQ1565RP : 7mA (Typ.)
Sync
V cc
R cc C a1
V co
C a2
Da Na D SY
IOP
R SY1
Power Down ISTART Vstop=9V
Power Up
C SY R SY2
Vcc Vstart=15V Vz
Figure 6. Synchronization Circuit Figure 5. Relationship Between Operating Supply Current and Vcc Voltage
13
FSCQ-SERIES
Vds
MOSFET Off MOSFET On
Vgs
2V R O
TQ
Vd
s
VRO VRO VDC
Vs ync
V sypk
Vrh (4.6V) Vrf (2.6V)
TR
Ids
Ipk
MOS FET Gate
Figure 7. Quasi-resonant Operation Waveforms
ON
ON
Figure 8. Normal Quasi-Resonant Operation Waveforms
The minimum drain voltage is indirectly detected by monitoring the Vcc winding voltage as shown in Figure 6 and 8. Choose voltage dividers, RSY1 and RSY2, so that the peak voltage of the sync signal (Vsypk) is lower than the OVP voltage (12V) to avoid triggering OVP in normal operation. It is typical to set Vsypk to be lower than OVP voltage by 3-4 V. To detect the optimum time to turn on MOSFET, the sync capacitor (CSY) should be determined so that TR is the same with TQ as shown in Figure 8. The TR and TQ are given as, respectively
R SY2 V co = R SY2 C SY ln -------- ---------------------------------- 2.6 R SY1 + R SY2
Switching frequency Extended QR operation
90kHz
Normal QR operation
45kHz
TR
T Q = L m C eo N a ( V o + V FO ) V co = ---------------------------------------- - V Fa Ns
Output power
Figure 9. Extended Quasi-Resonant Operation
where Lm is the primary side inductance of the transformer, and Ns and Na are the number of turns for the output winding and Vcc winding, respectively, VFo and VFa are the diode forward voltage drops of the output winding and Vcc winding, respectively, and Ceo is the sum of the output capacitance of the MOSFET and the external capacitor, Cr.
In general, the QRC has a limitation in a wide load range application, since the switching frequency increases as the output load decreases, resulting in a severe switching loss in the light load condition. To overcome this limitation, the FSCQ-Series employs an extended quasi-resonant switching operation. Figure 9 shows the mode change between normal and extended quasi-resonant operations. In the normal quasiresonant operation, the FSCQ-Series enters into the extended quasi-resonant operation when the switching frequency exceeds 90kHz as the load reduces. To reduce the switching frequency, the MOSFET is turned on when the drain voltage reaches the second minimum level, as shown in Figure 10.
14
FSCQ-SERIES
Once the FSCQ-Series enters into the extended quasiresonant operation, the first sync signal is ignored. After the first sync signal is applied, the sync threshold levels are changed from 4.6V and 2.6V to 3V and 1.8V, respectively, and the MOSFET turn-on time is synchronized to the second sync signal. The FSCQ-Series returns to its normal quasiresonant operation when the switching frequency reaches 45kHz as the load increases.
Vds 2VRO
3.2 Leading Edge Blanking (LEB) : At the instant the internal Sense FET is turned on, there is usually a high current spike through the Sense FET, caused by the external resonant capacitor across the MOSFET and secondary-side rectifier reverse recovery. Excessive voltage across the Rsense resistor can lead to incorrect feedback operation in the current mode PWM control. To counter this effect, the FSCQ-Series employs a leading edge blanking (LEB) circuit. This circuit inhibits the PWM comparator for a short time (TLEB) after the Sense FET is turned on.
Vcc Idelay
Vref IFB
OSC
Vo
Vfb
H11A817A
CB
4 D1 D2 2.5R + Vfb*
SenseFET
Vsync
KA431
R
Gate driver
-
4.6V 3V 2.6V 1.8V
MOSFET Gate
VSD OLP Rsense
Figure 11. Pulse Width Modulation (PWM) Circuit
ON
ON
Figure 10. Extended Quasi-Resonant Operation Waveforms
3. Feedback Control: The FSCQ-Series employs current mode control, as shown in Figure 11. An opto-coupler (such as Fairchild's H11A817A) and shunt regulator (such as Fairchild's KA431) are typically used to implement the feedback network. Comparing the feedback voltage with the voltage across the Rsense resistor plus an offset voltage makes it possible to control the switching duty cycle. When the reference pin voltage of the KA431 exceeds the internal reference voltage of 2.5V, the H11A817A LED current increases, pulling down the feedback voltage and reducing the duty cycle. This event typically happens when the input voltage is increased or the output load is decreased. 3.1 Pulse-by-Pulse Current Limit: Because current mode control is employed, the peak current through the SenseFET is limited by the inverting input of the PWM comparator (Vfb*) as shown in Figure 11. The feedback current (IFB) and internal resistors are designed so that the maximum cathode voltage of diode D2 is about 2.8V, which occurs when all IFB flows through the internal resistors. Since D1 is blocked when the feedback voltage (Vfb) exceeds 2.8V, the maximum voltage of the cathode of D2 is clamped at this voltage, thus clamping Vfb*. Therefore, the peak value of the current through the SenseFET is limited.
4. Protection Circuits: The FSCQ-Series has several selfprotective functions such as over load protection (OLP), abnormal over current protection (AOCP), over voltage protection (OVP), and thermal shutdown (TSD). OLP and OVP are auto-restart mode protections, while TSD and AOCP are latch mode protections. Because these protection circuits are fully integrated into the IC without external components, the reliability can be improved without increasing cost. -Auto-restart mode protection: Once the fault condition is detected, switching is terminated and the SenseFET remains off. This causes Vcc to fall. When Vcc falls to the under voltage lockout (UVLO) stop voltage of 9V, the protection is reset and the FSCQ-Series consumes only startup current (25uA). Then, the Vcc capacitor is charged up, since the current supplied through the startup resistor is larger than the current that the FPS consumes. When Vcc reaches the start voltage of 15V, the FSCQ-Series resumes its normal operation. If the fault condition is not removed, the SenseFET remains off and Vcc drops to stop voltage again. In this manner, the auto-restart can alternately enable and disable the switching of the power SenseFET until the fault condition is eliminated (see Figure 12). -Latch mode protection: Once this protection is triggered, switching is terminated and the Sense FET remains off until the AC power line is un-plugged. Then, Vcc continues charging and discharging between 9V and 15V. The latch is reset only when Vcc is discharged to 6V by un-plugging the
15
FSCQ-SERIES
AC power line.
V FB
Fault occurs
Over load protection
7.5V
Fault removed
Vds
Power on
2.8V
Vcc
T12= CB*(7.5-2.8)/Idelay
15V 9V
T1
T2
t
Figure 13. Over Load Protection
ICC IOP ISTART t
Normal operation Fault situation Normal operation
Figure 12. Auto Restart Mode Protection
AOCP Vaocp
-
Figure 14. AOCP Block
4.3 Over Voltage Protection (OVP) : If the secondary side feedback circuit malfunctions or a solder defect causes an open in the feedback path, the current through the optocoupler transistor becomes almost zero. Then, Vfb climbs up in a similar manner to the over load situation, forcing the
16
+
4.1 Over Load Protection (OLP): Overload is defined as the load current exceeding its normal level due to an unexpected abnormal event. In this situation, the protection circuit should trigger to protect the SMPS. However, even when the SMPS is in the normal operation, the over load protection circuit can be triggered during the load transition. To avoid this undesired operation, the over load protection circuit is designed to trigger after a specified time to determine whether it is a transient situation or an overload situation. Because of the pulse-by-pulse current limit capability, the maximum peak current through the SenseFET is limited, and therefore the maximum input power is restricted with a given input voltage. If the output consumes more than this maximum power, the output voltage (Vo) decreases below the set voltage. This reduces the current through the opto-coupler LED, which also reduces the optocoupler transistor current, thus increasing the feedback voltage (Vfb). If Vfb exceeds 2.8V, D1 is blocked, and the 5uA current source starts to charge CB slowly up to Vcc. In this condition, Vfb continues increasing until it reaches 7.5V, then the switching operation is terminated as shown in Figure 13. The delay time for shutdown is the time required to charge CB from 2.8V to 7.5V with 5uA. In general, a 20 ~ 50 ms delay time is typical for most applications. OLP is implemented in auto restart mode.
4.2 Abnormal Over Current Protection (AOCP): When the secondary rectifier diodes or the transformer pins are shorted, a steep current with extremely high di/dt can flow through the SenseFET during the LEB time. Even though the FSCQ-Series has OLP (Over Load Protection), it is not enough to protect the FSCQ-Series in that abnormal case, since severe current stress will be imposed on the SenseFET until the OLP triggers. The FSCQ-Series has an internal AOCP (Abnormal Over Current Protection) circuit as shown in Figure 14. When the gate turn-on signal is applied to the power SenseFET, the AOCP block is enabled and monitors the current through the sensing resistor. The voltage across the resistor is then compared with a preset AOCP level. If the sensing resistor voltage is greater than the AOCP level, the set signal is applied to the latch, resulting in the shutdown of SMPS. This protection is implemented in the latch mode.
2.5R
OSC
PWM
S
Q
R
Q
Gate Driver
R
LEB
Rsense 2 GND
FSCQ-SERIES
preset maximum current to be supplied to the SMPS until the over load protection triggers. Because more energy than required is provided to the output, the output voltage may exceed the rated voltage before the over load protection triggers, resulting in the breakdown of the devices in the secondary side. In order to prevent this situation, an over voltage protection (OVP) circuit is employed. In general, the peak voltage of the sync signal is proportional to the output voltage and the FSCQ-Series uses a sync signal instead of directly monitoring the output voltage. If the sync signal exceeds 12V, an OVP is triggered resulting in a shutdown of SMPS. In order to avoid undesired triggering of OVP during normal operation, the peak voltage of the sync signal should be designed to be below 12V. This protection is implemented in the auto restart mode.
In the standby mode, the picture ON signal is disabled and the transistor Q1 is turned off, which couples R3, Dz, and D1 to the reference pin of KA431. Then, Vo2 is determined by the zener diode breakdown voltage. Assuming that the forward voltage drop of D1 is 0.7V, Vo2 in standby mode is approximately given by
V o2
stby
= V Z + 0.7 + 2.5
VO2 VO1 (B+)
RD Dz R1 CF
C R
Linear Regulator
Micom
4.4 Thermal Shutdown (TSD) : The SenseFET and the control IC are built in one package. This makes it easy for the control IC to detect abnormal over temperature of the SenseFET. When the temperature exceeds approximately 150C, the thermal shutdown triggers. This protection is implemented in the latch mode.
Rbias RF D1
R3
Q1
Picture ON
KA431
A
R2
5. Soft Start : The FSCQ-Series has an internal soft-start circuit that increases PWM comparator's inverting input voltage together with the SenseFET current slowly after it starts up. The typical soft start time is 20msec. The pulse width to the power switching device is progressively increased to establish the correct working conditions for transformers, inductors, and capacitors. Increasing the pulse width to the power switching device also helps prevent transformer saturation and reduces the stress on the secondary diode during startup. For a fast build up of the output voltage, an offset is introduced in the soft-start reference current.
Figure 15. Typical Feedback Circuit to Drop Output Voltage in Standby Mode
6. Burst Operation : In order to minimize the power consumption in the standby mode, the FSCQ-Series employs burst operation. Once FSCQ-Series enters into the burst mode, FSCQ-Series allows all output voltages and effective switching frequency to be reduced. Figure 15 shows the typical feedback circuit for C-TV applications. In normal operation, the picture on signal is applied and the transistor Q1 is turned on, which de-couples R3, Dz and D1 from the feedback network. Therefore, only Vo1 is regulated by the feedback circuit in normal operation and determined by R1 and R2 as
V o1
norm
Figure 17 shows the burst mode operation waveforms. When the picture ON signal is disabled, Q1 is turned off and R3 and Dz are connected to the reference pin of KA431 through D1. Before Vo2 drops to Vo2stby, the voltage on the reference pin of KA431 is higher than 2.5V, which increases the current through the opto LED. This pulls down the feedback voltage (VFB) of FSCQ-Series and forces FSCQ-Series to stop switching. If the switching is disabled longer than 1.4ms, FSCQ-Series enters into burst operation and the operating current is reduced from IOP to 0.25mA (IOB). Since there is no switching, Vo2 decreases until it reaches Vo2stby. As Vo2 reaches Vo2stby, the current through the opto LED decreases allowing the feedback voltage to rise. When the feedback voltage reaches 0.4V, FSCQ-Series resumes switching with a predetermined peak drain current of 0.9A. After burst switching for 1.4ms, FSCQ-Series stops switching and checks the feedback voltage. If the feedback voltage is below 0.4V, FSCQ-Series stops switching until the feedback voltage increases to 0.4V. If the feedback voltage is above 0.4V, FSCQ-Series goes back to the normal operation.
R1 + R2 = 2.5 -------------------- R2
The output voltage drop circuit can be implemented alternatively as shown in Figure 16. In the circuit of Figure 16, the FSCQ-Series goes into burst mode, when picture off signal is applied to Q1. Then, Vo2 is determined by the zener diode breakdown voltage. Assuming that the forward
17
FSCQ-SERIES
voltage drop of opto LED is 1V, the approcimate value of Vo2 in standby mode is given by
V o2
stby
= VZ + 1
VO2
Linear Regulator Micom
RD Rbias CF
C R
VO1 (B+)
RF R1
KA431
A
R2
Dz Q1
Picture OFF
Figure 16. Feedback Circuit to Drop Output Voltage in Standby Mode
18
FSCQ-SERIES
(a) V o2 norm
(b)
(c)
V o2 stby
V FB
0.4V
Iop
I OP
I OB
Vds
Picture On
Picture Off Burst Mode
Picture On
V FB
0.4V 0.3V
0.4V
0.4V
V ds
1.4ms Ids 0.9A 0.9A
1.4ms
1.4ms
(a) Mode Change to Burst Operation
(b) Burst Operation
(c) Mode Change to Normal Operation
Figure 17. Burst Operation Waveforms
19
FSCQ-SERIES
FSCQ0565RT Typical Application Circuit
Application Output Power Input Voltage Universal Input (90-270Vac) Output Voltage (Max Current) 12V (0.5A) C-TV 59W 18V (0.3A) 125V (0.3A) 24V (0.4A)
Features
* * * * * * High Efficiency (>83% at 90Vac Input) Wider Load Range through the Extended Quasi-Resonant Operation Low Standby Mode Power Consumption (<1W) Low Component Count Enhanced System Reliability Through Various Protection Functions Internal Soft-Start (20ms)
Key Design Notes
* 24V output is designed to drop to around 8V in standby mode
1. Schematic
T1 EER3540 RT101 5D-9 C102 220uF 400V R101 100k 0.25W D104 UF4007 ZD101 18V 1W R102 150k 0.25W BEAD101 4 R106 C104 1.5k 10uF 1W 50V SYNC 5 D103 1N4148 R104 D101 R103 6 1.5k 1N4937 5.1 0.25W 0.25W C105 3.9nF 50V 7 LF101 14 15 16 C107 680pF 1kV 13 1 10
D205 EGP20D 12V, 0.5A C210 470pF 1kV D204 EGP20D 18V, 0.3A C209 470pF 1kV D202 EGP20J L201 C201 BEAD 100uF 160V 125V, 0.3A C202 47uF 160V C205 1000uF 35V C204 1000uF 35V
3
11
BD101
1 Drain 3 Vcc IC101 FSCQ0565RT GND 2 FB 4
D102 1N4937
12
C207 470pF 1kV D203 EGP20D
C103 10uF 50V
C106 47nF 50V
R105 470 0.25W
17 C208 470pF 1kV C203 1000uF 35V
24V, 0.4A
18
OPTO101 FOD817A C101 330nF 275VAC FUSE 250V 2.0A ZD201
R201 1k 0.25W R202 1k 0.25W
R205 220k 0.25W
VR201 30k Normal
ZD202 5.1V 0.5W R208 1k 0.25W R203 39k 0.25W R204 4.7k 0.25W D201 Q202 KSC945 SW201 R207 5.1k 0.25W R206 5.1k 0.25W
Standby
C206 22nF 50V C301 2.2nF Q201 KA431
20
FSCQ-SERIES
2. Transformer Schematic Diagram
EER3540 N p1 1 2 3 18 N 24V 17 16 N 125V/2 4 5 6 7 8 9 15 14 13 N 12V Na 12 11 10 N 18V
N125V/2 Np1 Na N18V N125V/2 Np2 N12V N24V
N p2
N 125V/2
3.Winding Specification No Np1 N125V/2 N24V N12V Np2 N125V/2 N18V Na Pin (sf) 1-3 16 - 15 18 - 17 12 - 13 3-4 15 - 14 11 - 10 7-6 Wire 0.5 x 1 0.5

Turns 32 32 13 7 32 32 10 20
Winding Method Center Winding Center Winding Center Winding Center Winding Center Winding Center Winding Center Winding Center Winding
x1
0.4 x 2 0.5 x 2 0.5

x1
0.5 x 1 0.4 x 2 0.3 x1
4.Electrical Characteristics
Pin Inductance Leakage Inductance 1-3 1-3
Specification 740uH 5% 10uH Max
Remarks 1kHz, 1V 2
nd
all short
5. Core & Bobbin Core : EER3540 Bobbin : EER3540 Ae : 107 mm2
21
FSCQ-SERIES
6.Demo Circuit Part List Part FUSE RT101 R101 R102 R103 R104 R105 R106 R107 R201 R202 R203 R204 R205 R206 R207 R208 VR201 C101 C102 C103 C104 C105 C106 C107 C108 C201 C202 C203 C204 C205 C206 C207 C208 C209 Value Fuse 250V / 2A NTC 5D-9 Resistor 100k 150k 5.1 1.5k 470 1.5k Open 1k 1k 39k 4.7k 220k 5.1k 5.1k 1k 30k Capacitor 330n/275VAC 220uF / 400V 10uF / 50V 10uF / 50V 3.9nF / 50V 47nF / 50V 680pF / 1kV Open 100uF / 160V 47uF / 160V 1000uF / 35V 1000uF / 35V 1000uF / 35V 22nF / 50V 470pF / 1kV 470pF / 1kV 470pF / 1kV Electrolytic Electrolytic Electrolytic Electrolytic Electrolytic Film Capacitor Ceramic Capacitor Ceramic Capacitor Ceramic Capacitor Box Capacitor Electrolytic Electrolytic Electrolytic Film Capacitor Film Capacitor Film Capacitor IC101 OPT101 Q201 Q202 FOD817A KA431LZ KSC945 TO-92 SW201 ON/OFF IC FSCQ0565RT TO-220F-5L T101 LF101 Transformer EER3540 Switch For MCU Signal BD101 0.25 W 0.25 W 0.25 W 0.25 W, 1% 0.25 W, 1% 0.25 W 0.25 W 0.25 W Bridge Diode GSIB660 Line Filter 14mH 6A, 600V 0.25 W 0.25 W 0.25 W 0.25 W 0.25 W 1W D101 D102 D103 D104 D105 ZD101 ZD102 ZD201 D201 D202 D203 D204 D205 1N4937 1N4937 1N4148 Short Open 1N4746 Open 1N5231 1N4148 EGP20J EGP20D EGP20D EGP20D 5.1V, 0.5W 0.15A, 50V 2A, 600V 2A, 200V 2A, 200V 2A, 200V 18V, 1W BEAD101 BEAD201 BEAD 5uH Diode 1A, 600V 1A, 600V 0.15A, 50V 3A Note Part C210 C301 Value 470pF / 1kV 2.2nF / 1kV Inductor Note Ceramic Capacitor AC Ceramic Capacitor
22
FSCQ-SERIES
FSCQ0765RT Typical Application Circuit
Application Output Power Input Voltage Universal input (90-270Vac) Output Voltage (Max Current) 12V (1A) C-TV 83W 18V (0.5A) 125V (0.4A) 24V (0.5A)
Features
* * * * * * High Efficiency (>83% at 90Vac Input) Wider Load Range through the Extended Quasi-Resonant Operation Low Standby Mode Power Consumption (<1W) Low Component Count Enhanced System Reliability Through Various Protection Functions Internal Soft-Start (20ms)
Key Design Notes
* 24V output is designed to drop to around 8V in standby mode
1. Schematic
T1 EER3540 RT101 5D-9 C102 220uF 400V R101 100k 0.25W D104 UF4007 ZD101 18V 1W R102 150k 0.25W BEAD101 4 R106 C104 1.5k 10uF 1W 50V SYNC 5 D103 1N4148 R104 D101 R103 6 1.5k 1N4937 5.1 0.25W 0.25W C105 3.9nF 50V 7 LF101 14 15 16 C107 1nF 1kV 13 1 10
D205 EGP20D 12V, 1.0A C210 470pF 1kV D204 EGP20D 18V, 0.5A C209 470pF 1kV D202 EGP20J L201 C201 BEAD 100uF 160V 125V, 0.4A C202 47uF 160V C205 1000uF 35V C204 1000uF 35V
3
11
BD101
1 Drain 3 Vcc IC101 FSCQ0765RT GND 2 FB 4
D102 1N4937
12
C207 470pF 1kV D203 EGP20D
C103 10uF 50V
C106 47nF 50V
R105 470 0.25W
17 C208 470pF 1kV C203 1000uF 35V
24V, 0.5A
18
OPTO101 FOD817A C101 330nF 275VAC FUSE 250V 2.0A ZD201
R201 1k 0.25W R202 1k 0.25W
R205 220k 0.25W
VR201 30k Normal
ZD202 5.1V 0.5W R208 1k 0.25W R203 39k 0.25W R204 4.7k 0.25W D201 Q202 KSC945 SW201 R207 5.1k 0.25W R206 5.1k 0.25W
Standby
C206 22nF 50V C301 2.2nF Q201 KA431
23
FSCQ-SERIES
2. Transformer Schematic Diagram
EER3540 N p1 1 2 3 18 N 24V 17 16 N 125V/2 4 5 6 7 8 9 15 14 13 N 12V Na 12 11 10 N 18V
N125V/2 Np1 Na N18V N125V/2 Np2 N12V N24V
N p2
N 125V/2
3.Winding Specification No Np1 N125V/2 N24V N12V Np2 N125V/2 N18V Na Pin (sf) 1-3 16 - 15 18 - 17 12 - 13 3-4 15 - 14 11 - 10 7-6 Wire 0.5 x 1 0.5

Turns 32 32 13 7 32 32 10 20
Winding Method Center Winding Center Winding Center Winding Center Winding Center Winding Center Winding Center Winding Center Winding
x1
0.4 x 2 0.5 x 2 0.5

x1
0.5 x 1 0.4 x 2 0.3 x1
4.Electrical Characteristics
Pin Inductance Leakage Inductance 1-3 1-3
Specification 515uH 5% 10uH Max
Remarks 1kHz, 1V 2
nd
all short
5. Core & Bobbin Core : EER3540 Bobbin : EER3540 Ae : 107 mm2
24
FSCQ-SERIES
6.Demo Circuit Part List Part FUSE RT101 R101 R102 R103 R104 R105 R106 R107 R201 R202 R203 R204 R205 R206 R207 R208 VR201 C101 C102 C103 C104 C105 C106 C107 C108 C201 C202 C203 C204 C205 C206 C207 C208 C209 Value Fuse 250V / 2A NTC 5D-9 Resistor 100k 150k 5.1 1.5k 470 1.5k Open 1k 1k 39k 4.7k 220k 5.1k 5.1k 1k 30k Capacitor 330n/275VAC 220uF / 400V 10uF / 50V 10uF / 50V 3.9nF / 50V 47nF / 50V 1nF / 1kV Open 100uF / 160V 47uF / 160V 1000uF / 35V 1000uF / 35V 1000uF / 35V 22nF / 50V 470pF / 1kV 470pF / 1kV 470pF / 1kV Electrolytic Electrolytic Electrolytic Electrolytic Electrolytic Film Capacitor Ceramic Capacitor Ceramic Capacitor Ceramic Capacitor Box Capacitor Electrolytic Electrolytic Electrolytic Film Capacitor Film Capacitor Film Capacitor IC101 OPT101 Q201 Q202 FOD817A KA431LZ KSC945 TO-92 SW201 ON/OFF IC FSCQ0765RT TO-220F-5L T101 LF101 Transformer EER3540 Switch For MCU Signal BD101 0.25 W 0.25 W 0.25 W 0.25 W, 1% 0.25 W, 1% 0.25 W 0.25 W 0.25 W Bridge Diode GSIB660 Line Filter 14mH 6A, 600V 0.25 W 0.25 W 0.25 W 0.25 W 0.25 W 1W D101 D102 D103 D104 D105 ZD101 ZD102 ZD201 D201 D202 D203 D204 D205 1N4937 1N4937 1N4148 Short Open 1N4746 Open 1N5231 1N4148 EGP20J EGP20D EGP20D EGP20D 5.1V, 0.5W 0.15A, 50V 2A, 600V 2A, 200V 2A, 200V 2A, 200V 18V, 1W BEAD101 BEAD201 BEAD 5uH Diode 1A, 600V 1A, 600V 0.15A, 50V 3A Note Part C210 C301 Value 470pF / 1kV 2.2nF / 1kV Inductor Note Ceramic Capacitor AC Ceramic Capacitor
25
FSCQ-SERIES
FSCQ0965RT Typical Application Circuit
Application Output Power Input Voltage Universal input (90-270Vac) Output Voltage (Max Current) 12V (0.5A) C-TV 102W 18V (0.5A) 125V (0.5A) 24V (1.0A)
Features
* * * * * * High Efficiency (>83% at 90Vac Input) Wider Load Range through the Extended Quasi-Resonant Operation Low Standby Mode Power Consumption (<1W) Low Component Count Enhanced System Reliability Through Various Protection Functions Internal Soft-Start (20ms)
Key Design Notes
* 24V output is designed to drop to around 8V in standby mode
1. Schematic
T1 EER3540 RT101 5D-9 C102 220uF 400V R101 100k 0.25W D104 UF4007 ZD101 18V 1W R102 150k 0.25W BEAD101 4 R106 C104 1.5k 10uF 1W 50V SYNC 5 D103 1N4148 R104 D101 R103 6 1.5k 1N4937 5.1 0.25W 0.25W C105 3.9nF 50V 7 LF101 14 15 16 C107 1nF 1kV 13 1 10
D205 EGP20D 12V, 0.5A C210 470pF 1kV D204 EGP20D 18V, 0.5A C209 470pF 1kV D202 EGP30J L201 C201 BEAD 100uF 160V 125V, 0.5A C202 47uF 160V C205 1000uF 35V C204 1000uF 35V
3
11
BD101
1 Drain 3 Vcc IC101 FSCQ0965RT GND 2 FB 4
D102 1N4937
12
C207 470pF 1kV D203 EGP30D
C103 10uF 50V
C106 47nF 50V
R105 470 0.25W
17 C208 470pF 1kV C203 1000uF 35V
24V, 1.0A
18
OPTO101 FOD817A C101 330nF 275VAC FUSE 250V 3.0A ZD201
R201 1k 0.25W R202 1k 0.25W
R205 220k 0.25W
VR201 30k Normal
ZD202 5.1V 0.5W R208 1k 0.25W R203 39k 0.25W R204 4.7k 0.25W D201 Q202 KSC945 SW201 R207 5.1k 0.25W R206 5.1k 0.25W
Standby
C206 22nF 50V C301 2.2nF Q201 KA431
26
FSCQ-SERIES
2. Transformer Schematic Diagram
EER3540 N p1 1 2 3 18 N 24V 17 16 N 125V/2 4 5 6 7 8 9 15 14 13 N 12V Na 12 11 10 N 18V
N125V/2 Np1 Na N18V N125V/2 Np2 N12V N24V
N p2
N 125V/2
3.Winding Specification No Np1 N125V/2 N24V N12V Np2 N125V/2 N18V Na Pin (sf) 1-3 16 - 15 18 - 17 12 - 13 3-4 15 - 14 11 - 10 7-6 Wire 0.6 x 1 0.6

Turns 32 32 13 7 32 32 10 20
Winding Method Center Winding Center Winding Center Winding Center Winding Center Winding Center Winding Center Winding Center Winding
x1
0.4 x 2 0.5 x 2 0.6

x1
0.6 x 1 0.4 x 2 0.3 x1
4.Electrical Characteristics
Pin Inductance Leakage Inductance 1-3 1-3
Specification 410uH 5% 10uH Max
Remarks 1kHz, 1V 2
nd
all short
5. Core & Bobbin Core : EER3540 Bobbin : EER3540 Ae : 107 mm2
27
FSCQ-SERIES
6.Demo Circuit Part List Part FUSE RT101 R101 R102 R103 R104 R105 R106 R107 R201 R202 R203 R204 R205 R206 R207 R208 VR201 C101 C102 C103 C104 C105 C106 C107 C108 C201 C202 C203 C204 C205 C206 C207 C208 C209 Value Fuse 250V / 3A NTC 5D-9 Resistor 100k 150k 5.1 1.5k 470 1.5k Open 1k 1k 39k 4.7k 220k 5.1k 5.1k 1k 30k Capacitor 330n/275VAC 220uF / 400V 10uF / 50V 10uF / 50V 3.9nF / 50V 47nF / 50V 1nF / 1kV Open 100uF / 160V 47uF / 160V 1000uF / 35V 1000uF / 35V 1000uF / 35V 22nF / 50V 470pF / 1kV 470pF / 1kV 470pF / 1kV Electrolytic Electrolytic Electrolytic Electrolytic Electrolytic Film Capacitor Ceramic Capacitor Ceramic Capacitor Ceramic Capacitor Box Capacitor Electrolytic Electrolytic Electrolytic Film Capacitor Film Capacitor Film Capacitor IC101 OPT101 Q201 Q202 FOD817A KA431LZ KSC945 TO-92 SW201 ON/OFF IC FSCQ0965RT TO-220F-5L T101 LF101 Transformer EER3540 Switch For MCU Signal BD101 0.25 W 0.25 W 0.25 W 0.25 W, 1% 0.25 W, 1% 0.25 W 0.25 W 0.25 W Bridge Diode GSIB660 Line Filter 14mH 6A, 600V 0.25 W 0.25 W 0.25 W 0.25 W 0.25 W 1W D101 D102 D103 D104 D105 ZD101 ZD102 ZD201 D201 D202 D203 D204 D205 1N4937 1N4937 1N4148 Short Open 1N4746 Open 1N5231 1N4148 EGP30J EGP30D EGP20D EGP20D 5.1V, 0.5W 0.15A, 50V 3A, 600V 3A, 200V 2A, 200V 2A, 200V 18V, 1W BEAD101 BEAD201 BEAD 5uH Diode 1A, 600V 1A, 600V 0.15A, 50V 3A Note Part C210 C301 Value 470pF / 1kV 3.3nF / 1kV Inductor Note Ceramic Capacitor AC Ceramic Capacitor
28
FSCQ-SERIES
FSCQ1265RT Typical Application Circuit
Application Output Power Input Voltage Universal input (90-270Vac) Output Voltage (Max Current) 8.5V (0.5A) C-TV 132W 15V (0.5A) 140V (0.6A) 24V (1.5A)
Features
* * * * * * High Efficiency (>83% at 90Vac Input) Wider Load Range through the Extended Quasi-Resonant Operation Low Standby Mode Power Consumption (<1W) Low Component Count Enhanced System Reliability Through Various Protection Functions Internal Soft-Start (20ms)
Key Design Notes
* 24V output is designed to drop to around 8V in standby mode
1. Schematic
T1 EER4042 RT101 5D-11 C102 330uF 400V R101 100k 0.25W 1 10
D205 EGP20D 15V, 0.5A C210 470pF 1kV D204 EGP20D C204 1000uF 35V
3 R102 150k 0.25W BEAD101 4 R106 C104 1k 10uF 1W 50V C107 1nF 1kV
11
13 C209 470pF 1kV D202 EGP30J C205 1000uF 35V
8.5V, 0.5A
BD101
1 Drain SYNC 3 Vcc IC101 5 FSCQ1265RT GND 2 FB 4
D105 1N4937
12
ZD102 18V 1W
D106 1N4148
R104 D103 R103 6 1.5k 1N4937 5.1 0.25W 0.25W C105 3.3nF 50V 7
14 15 16 C207 470pF 1kV D203 EGP30D 17 C208 470pF 1kV
L202 C201 BEAD 150uF 160V
140V, 0.6A C202 68uF 160V
C103 10uF 50V
C106 47nF 50V
R105 470 0.25W
24V, 1.5A C203 1000uF 35V
LF101
18
OPTO101 FOD817A C101 330nF 275VAC FUSE 250V 5.0A
R201 1k 0.25W R202 1k 0.25W
VR201 30k
C206 150nF 50V
R203 39k 0.25W
R205 240k D201 0.25W 1N4148
ZD201 5.1V 0.5W R208 1k 0.25W
C301 3.3nF
Q201 KA431 LZ
R204 4.7k 0.25W
Q202 KSC945
SW201 R207 5.1k 0.25W R206 10k 0.25W
29
FSCQ-SERIES
2. Transformer Schematic Diagram
EER4042 Np1 1 2 3 18 N24V 17 16 N140V/2 4 5 6 7 8 9 15 14 13 N8.5V Na 12 11 10 N15V NP1 N24V N140V/2 N140V/2 NP2 N140V/2 N8.5V Na N15V Np2
3.Winding Specification No N24 Np1 N140V/2 Np2 N140V/2 N8.5V N15V Na Pin (sf) 18 - 17 1-3 16 - 15 3-4 15 - 14 12 - 13 11 - 10 7-6 Wire 0.65 x 2 0.1

Turns 8 20 23 20 22 3 6 13
Winding Method Space Winding Center Winding Center Winding Center Winding Center Winding Space Winding Space Winding Space Winding
x 10 x 2
0.1 x 10 x 2 0.1 x 10 x 2 0.1 x 10 x 2

0.6 x 1 0.6 x 1 0.3 x1
4.Electrical Characteristics
Pin Inductance Leakage Inductance 1-4 1-4
Specification 315uH 5% 10uH Max
Remarks 1kHz, 1V 2
nd
all short
5. Core & Bobbin Core : EER4042 Bobbin : EER4042(18Pin) Ae : 153 mm2
30
FSCQ-SERIES
6.Demo Circuit Part List Part FUSE RT101 R101 R102 R103 R104 R105 R106 R107 R201 R202 R203 R204 R205 R206 R207 R208 VR201 C101 C102 C103 C104 C105 C106 C107 C108 C201 C202 C203 C204 C205 C206 C207 C208 C209 Value Fuse 250V / 5A NTC 5D-11 Resistor 100k 150k 5.1 1.5k 470 1k Open 1k 1k 39k 4.7k 240k 10k 5.1k 1k 30k Capacitor 330n/275Vac 330uF / 400V 10uF / 50V 10uF / 50V 3.3nF / 50V 47nF / 50V 1nF / 1kV Open 150uF / 160V 68uF / 160V 1000uF / 35V 1000uF / 35V 1000uF / 35V 150nF / 50V 470pF / 1kV 470pF / 1kV 470pF / 1kV Electrolytic Electrolytic Electrolytic Electrolytic Electrolytic Film Capacitor Ceramic Capacitor Ceramic Capacitor Ceramic Capacitor Box Capacitor Electrolytic Electrolytic Electrolytic Film Capacitor Film Capacitor Film Capacitor IC101 OPT101 Q201 Q202 FOD817A KA431LZ KSC945 TO-92 SW201 ON/OFF IC FSCQ1265RT TO-220F-5L T101 LF101 Transformer EER4042 Switch For MCU Signal BD101 0.25 W 0.25 W 0.25 W 0.25 W, 1% 0.25 W, 1% 0.25 W 0.25 W 0.25 W Bridge Diode GSIB660 Line Filter 14mH 6A, 600V 0.25 W 0.25 W 0.25 W 0.25 W 0.25 W 1W D101 D102 D103 D104 D105 ZD101 ZD102 ZD201 D201 D202 D203 D204 D205 1N4937 1N4937 1N4148 Short Open 1N4746 Open 1N5231 1N4148 EGP30J EGP30D EGP20D EGP20D 5.1V, 0.5W 0.15A, 50V 3A, 600V 3A, 200V 2A, 200V 2A, 200V 18V, 1W BEAD101 BEAD201 BEAD 5uH Diode 1A, 600V 1A, 600V 0.15A, 50V 3A Note Part C210 C301 Value 470pF / 1kV 3.3nF / 1kV Inductor Note Ceramic Capacitor AC Ceramic Capacitor
31
FSCQ-SERIES
FSCQ1465RT Typical Application Circuit
Application Output Power Input Voltage Universal input (90-270Vac) Output Voltage (Max Current) 8.5V (0.5A) C-TV 146W 15V (0.5A) 140V (0.7A) 24V (1.5A)
Features
* * * * * * High Efficiency (>83% at 90Vac Input) Wider Load Range through the Extended Quasi-Resonant Operation Low Standby Mode Power Consumption (<1W) Low Component Count Enhanced System Reliability Through Various Protection Functions Internal Soft-Start (20ms)
Key Design Notes
* 24V output is designed to drop to around 8V in standby mode
1. Schematic
T1 EER4245 RT101 6D-22 C102 330uF 400V R101 100k 0.25W 1 10
D205 EGP20D 15V, 0.5A C210 470pF 1kV D204 EGP20D C204 1000uF 35V
3 R102 150k 0.25W BEAD101 4 R106 C104 1k 10uF 1W 50V SYNC 5 D106 1N4148 R104 D103 R103 6 1.5k 1N4937 5.1 0.25W 0.25W C105 2.7nF 50V 7 C107 1nF 1kV
11
13 C209 470pF 1kV D202 EGP30J 14 15 16 C207 470pF 1kV D203 EGP30D 17 C208 470pF 1kV C203 1000uF 35V L202 C201 BEAD 150uF 160V C205 1000uF 35V
8.5V, 0.5A
BD101
1 Drain 3 Vcc IC101 FSCQ1465RT GND 2 FB 4
D105 1N4937
12
ZD102 18V 1W
140V, 0.7A C202 68uF 160V
C103 10uF 50V
C106 47nF 50V
R105 470 0.25W
24V, 1.5A
LF101
18
OPTO101 FOD817A C101 330nF 275VAC FUSE 250V 5.0A
R201 1k 0.25W R202 1k 0.25W
VR201 30k
C206 150nF 50V
R203 39k 0.25W
R205 240k D201 0.25W 1N4148
ZD201 5.1V 0.5W R208 1k 0.25W
C301 3.3nF
Q201 KA431 LZ
R204 4.7k 0.25W
Q202 KSC945
SW201 R207 5.1k 0.25W R206 10k 0.25W
32
FSCQ-SERIES
2. Transformer Schematic Diagram
EER4245 Np1 1 2 3 18 N24V 17 16 N140V/2 4 5 6 7 8 9 15 14 13 N8.5V Na 12 11 10 N15V NP1 N24V N140V/2 N140V/2 NP2 N140V/2 N8.5V Na N15V Np2
3.Winding Specification No N24 Np1 N140V/2 Np2 N140V/2 N8.5V N15V Na Pin (sf) 18 - 17 1-3 16 - 15 3-4 15 - 14 12 - 13 11 - 10 7-6 Wire 0.65 x 2 0.08

Turns 5 13 15 13 14 2 3 8
Winding Method Space Winding Center Winding Center Winding Center Winding Center Winding Space Winding Space Winding Space Winding
x 20 x 2
0.08 x 20 x 2 0.08 x 20 x 2 0.08 x 20 x 2

0.6 x 1 0.6 x 1 0.3 x1
4.Electrical Characteristics
Pin Inductance Leakage Inductance 1-4 1-4
Specification 260uH 5% 10uH Max
Remarks 1kHz, 1V 2
nd
all short
5. Core & Bobbin Core : EER4245 Bobbin : EER4245(18Pin) Ae : 201.8 mm2
33
FSCQ-SERIES
6.Demo Circuit Part List Part FUSE RT101 R101 R102 R103 R104 R105 R106 R107 R201 R202 R203 R204 R205 R206 R207 R208 VR201 C101 C102 C103 C104 C105 C106 C107 C108 C201 C202 C203 C204 C205 C206 C207 C208 C209 Value Fuse 250V / 5A NTC 6D-22 Resistor 100k 150k 5.1 1.5k 470 1k Open 1k 1k 39k 4.7k 240k 10k 5.1k 1k 30k Capacitor 330n/275VAC 330uF / 400V 10uF / 50V 10uF / 50V 2.7nF / 50V 47nF / 50V 1nF / 1kV Open 150uF / 160V 68uF / 160V 1000uF / 35V 1000uF / 35V 1000uF / 35V 150nF / 50V 470pF / 1kV 470pF / 1kV 470pF / 1kV Electrolytic Electrolytic Electrolytic Electrolytic Electrolytic Film Capacitor Ceramic Capacitor Ceramic Capacitor Ceramic Capacitor Box Capacitor Electrolytic Electrolytic Electrolytic Film Capacitor Film Capacitor Film Capacitor IC101 OPT101 Q201 Q202 FOD817A KA431LZ KSC945 TO-92 SW201 ON/OFF IC FSCQ1465RT TO-220F-5L T101 LF101 Transformer EER3540 Switch For MCU Signal BD101 0.25 W 0.25 W 0.25 W 0.25 W, 1% 0.25 W, 1% 0.25 W 0.25 W 0.25 W Bridge Diode GSIB660 Line Filter 14mH 6A, 600V 0.25 W 0.25 W 0.25 W 0.25 W 0.25 W 1W D101 D102 D103 D104 D105 ZD101 ZD102 ZD201 D201 D202 D203 D204 D205 1N4937 1N4937 1N4148 Short Open 1N4746 Open 1N5231 1N4148 EGP30J EGP30D EGP20D EGP20D 5.1V, 0.5W 0.15A, 50V 3A, 600V 3A, 200V 2A, 200V 2A, 200V 18V, 1W BEAD101 BEAD201 BEAD 5uH Diode 1A, 600V 1A, 600V 0.15A, 50V 3A Note Part C210 C301 Value 470pF / 1kV 3.3nF / 1kV Inductor Note Ceramic Capacitor AC Ceramic Capacitor
34
FSCQ-SERIES
FSCQ1565RT Typical Application Circuit
Application Output Power Input Voltage Universal input (90-270Vac) Output Voltage (Max Current) 8.5V (0.5A) C-TV 160W 15V (0.5A) 140V (0.8A) 24V (1.5A)
Features
* * * * * * High Efficiency (>83% at 90Vac Input) Wider Load Range through the Extended Quasi-Resonant Operation Low Standby Mode Power Consumption (<1W) Low Component Count Enhanced System Reliability Through Various Protection Functions Internal Soft-Start (20ms)
Key Design Notes
* 24V output is designed to drop to around 8V in standby mode
1. Schematic
T1 EER4245 RT101 6D-22 C102 470uF 400V R101 100k 0.25W 1 10
D205 EGP20D 15V, 0.5A C210 470pF 1kV D204 EGP20D C204 1000uF 35V
3 R102 150k 0.25W BEAD101 4 R106 C104 1k 10uF 1W 50V C107 1nF 1kV
11
13 C209 470pF 1kV D202 EGP30J C205 1000uF 35V
8.5V, 0.5A
BD101
1 Drain SYNC 3 Vcc IC101 5 FSCQ1565RT GND 2 FB 4
D105 1N4937
12
ZD102 18V 1W
D106 1N4148
R104 D103 R103 6 1.5k 1N4937 5.1 0.25W 0.25W C105 2.7nF 50V 7
14 15 16 C207 470pF 1kV D203 EGP30D 17 C208 470pF 1kV
L202 C201 BEAD 220uF 160V
140V, 0.8A C202 68uF 160V
C103 10uF 50V
C106 47nF 50V
R105 470 0.25W
24V, 1.5A C203 1000uF 35V
LF101
18
OPTO101 FOD817A C101 330nF 275VAC FUSE 250V 5.0A
R201 1k 0.25W R202 1k 0.25W
VR201 30k
C206 150nF 50V
R203 39k 0.25W
R205 240k D201 0.25W 1N4148
ZD201 5.1V 0.5W R208 1k 0.25W
C301 3.3nF
Q201 KA431 LZ
R204 4.7k 0.25W
Q202 KSC945
SW201 R207 5.1k 0.25W R206 10k 0.25W
35
FSCQ-SERIES
2. Transformer Schematic Diagram
EER4245 Np1 1 2 3 18 N24V 17 16 N140V/2 4 5 6 7 8 9 15 14 13 N8.5V Na 12 11 10 N15V NP1 N24V N140V/2 N140V/2 NP2 N140V/2 N8.5V Na N15V Np2
3.Winding Specification No N24 Np1 N140V/2 Np2 N140V/2 N8.5V N15V Na Pin (sf) 18 - 17 1-3 16 - 15 3-4 15 - 14 12 - 13 11 - 10 7-6 Wire 0.65 x 2 0.08

Turns 5 13 15 13 14 2 3 8
Winding Method Space Winding Center Winding Center Winding Center Winding Center Winding Space Winding Space Winding Space Winding
x 20 x 2
0.08 x 20 x 2 0.08 x 20 x 2 0.08 x 20 x 2

0.6 x 1 0.6 x 1 0.3 x1
4.Electrical Characteristics
Pin Inductance Leakage Inductance 1-4 1-4
Specification 220uH 5% 10uH Max
Remarks 1kHz, 1V 2
nd
all short
5. Core & Bobbin Core : EER4245 Bobbin : EER4245(18Pin) Ae : 201.8 mm2
36
FSCQ-SERIES
6.Demo Circuit Part List Part FUSE RT101 R101 R102 R103 R104 R105 R106 R107 R201 R202 R203 R204 R205 R206 R207 R208 VR201 C101 C102 C103 C104 C105 C106 C107 C108 C201 C202 C203 C204 C205 C206 C207 C208 C209 Value Fuse 250V / 5A NTC 6D-22 Resistor 100k 150k 5.1 1.5k 470 1k Open 1k 1k 39k 4.7k 240k 10k 5.1k 1k 30k Capacitor 330n/275Vac 470uF / 400V 10uF / 50V 10uF / 50V 2.7nF / 50V 47nF / 50V 1nF / 1kV Open 220uF / 160V 68uF / 160V 1000uF / 35V 1000uF / 35V 1000uF / 35V 150nF / 50V 470pF / 1kV 470pF / 1kV 470pF / 1kV Electrolytic Electrolytic Electrolytic Electrolytic Electrolytic Film Capacitor Ceramic Capacitor Ceramic Capacitor Ceramic Capacitor Box Capacitor Electrolytic Electrolytic Electrolytic Film Capacitor Film Capacitor Film Capacitor IC101 OPT101 Q201 Q202 FOD817A KA431LZ KSC945 TO-92 SW201 ON/OFF IC FSCQ1565RT TO-220F-5L T101 LF101 Transformer EER4245 Switch For MCU Signal BD101 0.25 W 0.25 W 0.25 W 0.25 W, 1% 0.25 W, 1% 0.25 W 0.25 W 0.25 W Bridge Diode GSIB660 Line Filter 14mH 6A, 600V 0.25 W 0.25 W 0.25 W 0.25 W 0.25 W 1W D101 D102 D103 D104 D105 ZD101 ZD102 ZD201 D201 D202 D203 D204 D205 1N4937 1N4937 1N4148 Short Open 1N4746 Open 1N5231 1N4148 EGP30J EGP30D EGP20D EGP20D 5.1V, 0.5W 0.15A, 50V 3A, 600V 3A, 200V 2A, 200V 2A, 200V 18V, 1W BEAD101 BEAD201 BEAD 5uH Diode 1A, 600V 1A, 600V 0.15A, 50V 3A Note Part C210 C301 Value 470pF / 1kV 3.3nF / 1kV Inductor Note Ceramic Capacitor AC Ceramic Capacitor
37
FSCQ-SERIES
FSCQ1565RP Typical Application Circuit
Application Output Power Input Voltage Universal input (90-270Vac) Output Voltage (Max Current) 8.5V (1A) C-TV 198W 15V (1A) 140V (0.9A) 24V (2A)
Features
* * * * * * High Efficiency (>83% at 90Vac Input) Wider Load Range through the Extended Quasi-Resonant Operation Low Standby Mode Power Consumption (<1W) Low Component Count Enhanced System Reliability Through Various Protection Functions Internal Soft-Start (20ms)
Key Design Notes
* 24V output is designed to drop to around 8V in standby mode
1. Schematic
T1 EER4942 RT101 6D-22 C102 470uF 400V R101 100k 0.25W 1 10
D205 EGP20D 15V, 1A C210 470pF 1kV D204 EGP20D C204 1000uF 35V
3 R102 150k 0.25W BEAD101 4 R106 C104 1k 10uF 1W 50V C107 1nF 1kV
11
13 C209 470pF 1kV D202 EGP30J C205 1000uF 35V
8.5V, 1A
BD101
1 Drain SYNC 3 Vcc IC101 5 FSCQ1565RP GND 2 FB 4
D105 1N4937
12
ZD102 18V 1W
D106 1N4148
R104 D103 R103 6 1.5k 1N4937 5.1 0.25W 0.25W C105 2.7nF 50V 7
14 15 16 C207 470pF 1kV D203 EGP30D 17 C208 470pF 1kV
L202 C201 BEAD 220uF 160V
140V, 0.9A C202 100uF 160V
C103 10uF 50V
C106 47nF 50V
R105 470 0.25W
24V, 2A C203 2200uF 35V
LF101
18
OPTO101 FOD817A C101 330nF 275VAC FUSE 250V 5.0A
R201 1k 0.25W R202 1k 0.25W
VR201 30k
C206 22nF 50V
R203 39k 0.25W
R205 240k D201 0.25W 1N4148
ZD201 5.1V 0.5W R208 1k 0.25W
C301 3.3nF
Q201 KA431 LZ
R204 4.7k 0.25W
Q202 KSC945
SW201 R207 5.1k 0.25W R206 10k 0.25W
38
FSCQ-SERIES
2. Transformer Schematic Diagram
EER4942 Np1 1 2 3 18 N24V 17 16 N140V/2 4 5 6 7 8 9 15 14 13 N8.5V Na 12 11 10 N15V NP1 N24V N140V/2 N140V/2 NP2 N140V/2 N8.5V Na N15V Np2
3.Winding Specification No N24 Np1 N140V/2 Np2 N140V/2 N8.5V N15V Na Pin (sf) 18 - 17 1-3 16 - 15 3-4 15 - 14 12 - 13 11 - 10 7-6 Wire 0.65 x 2 0.08

Turns 5 13 15 13 14 2 3 8
Winding Method Space Winding Center Winding Center Winding Center Winding Center Winding Space Winding Space Winding Space Winding
x 20 x 2
0.08 x 20 x 2 0.08 x 20 x 2 0.08 x 20 x 2 x1
0.6
0.6 x 1 0.3 x 1
4.Electrical Characteristics
Pin Inductance Leakage Inductance 1-4 1-4
Specification 210uH 5% 10uH Max
Remarks 1kHz, 1V 2
nd
all short
5. Core & Bobbin Core : EER4942 Bobbin : EER4942(18Pin) Ae : 231 mm2
39
FSCQ-SERIES
6.Demo Circuit Part List
Part FUSE RT101 R101 R102 R103 R104 R105 R106 R107 R201 R202 R203 R204 R205 R206 R207 R208 VR201 C101 C102 C103 C104 C105 C106 C107 C108 C201 C202 C203 C204 C205 C206 C207 C208 C209 Value Fuse 250V / 5A NTC 6D-22 Resistor 100k 150k 5.1 1.5k 470 1k Open 1k 1k 39k 4.7k 240k 10k 5.1k 1k 30k Capacitor 330n/275Vac 470uF / 400V 10uF / 50V 10uF / 50V 2.7nF / 50V 47nF / 50V 1nF / 1kV Open 220uF / 200V 100uF / 200V 2200uF / 35V 1000uF / 35V 1000uF / 35V 22nF / 50V 470pF / 1kV 470pF / 1kV 470pF / 1kV Electrolytic Electrolytic Electrolytic Electrolytic Electrolytic Film Capacitor Ceramic Capacitor Ceramic Capacitor Ceramic Capacitor Box Capacitor Electrolytic Electrolytic Electrolytic Film Capacitor Film Capacitor Film Capacitor IC101 OPT101 Q201 Q202 FOD817A KA431LZ KSC945 TO-92 SW201 ON/OFF IC FSCQ1565RP TO-220F-5L T101 LF101 Transformer EER4942 Switch For MCU Signal BD101 0.25 W 0.25 W 0.25 W 0.25 W, 1% 0.25 W, 1% 0.25 W 0.25 W 0.25 W Bridge Diode GSIB660 Line Filter 14mH 6A, 600V 0.25 W 0.25 W 0.25 W 0.25 W 0.25 W 1W D101 D102 D103 D104 D105 ZD101 ZD102 ZD201 D201 D202 D203 D204 D205 1N4937 1N4937 1N4148 Short Open 1N4746 Open 1N5231 1N4148 EGP30J EGP30D EGP20D EGP20D 5.1V, 0.5W 0.15A, 50V 3A, 600V 3A, 200V 2A, 200V 2A, 200V 18V, 1W BEAD101 BEAD201 BEAD 5uH Diode 1A, 600V 1A, 600V 0.15A, 50V 3A Note Part C210 C301 Value 470pF / 1kV 3.3nF / 1kV Inductor Note Ceramic Capacitor AC Ceramic Capacitor
40
FSCQ-SERIES
PCB Layout
41
FSCQ-SERIES
Package Dimensions
Dimensions in Millimeters
TO-220F-5L(Forming)
42
FSCQ-SERIES
Package Dimensions
Dimensions in Millimeters
TO-3PF-7L(Forming)
6.05 5.65 15.70 15.30 9.70 9.30 3.55 3.15 (1.65)
4.70 4.30 10.20 9.80 2.10 1.70 24.70 24.30 23.20 22.80
36.50 35.50 4.30 3.70 1.70 1.30
(1.00)
MAX 1.00
12.00 11.00 0.90 0.70
R0.90 R0.90
2.55 2.15 3.65 3.05 3.06 2.46 R0.90
MAX 2.00
2.80 2.20
2.54 1.50 4.50
5.30 4.70
0.80 0.50 3.48 2.88
NOTES: UNLESS OTHERWISE SPECIFIED A) THIS PACKAGE DOES NOT COMPLY TO ANY CURRENT PACKAGING STANDARD. B) ALL DIMENSIONS ARE IN MILLIMETERS. C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
MKT-TO3PFC05revA
43
FSCQ-SERIES
Ordering Information
Product Number FSCQ0565RTYDTU FSCQ0765RTYDTU FSCQ0965RTYDTU FSCQ1265RTYDTU FSCQ1465RTYDTU FSCQ1565RTYDTU FSCQ1565RPSYDTU
YDTU : Forming Type SYDTU : Forming Type
Package TO-220F-5L(Forming) TO-220F-5L(Forming) TO-220F-5L(Forming) TO-220F-5L(Forming) TO-220F-5L(Forming) TO-220F-5L(Forming) TO-3PF-7L(Forming)
Marking Code CQ0565RT CQ0765RT CQ0965RT CQ1265RT CQ1465RT CQ1565RT CQ1565RP
BVdss 650V 650V 650V 650V 650V 650V 650V
Rds(ON) Max. 2.2 1.6 1.2 0.9 0.8 0.7 0.7
DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
www.fairchildsemi.com 10/4/05 0.0m 001 (c) 2005 Fairchild Semiconductor Corporation
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.


▲Up To Search▲   

 
Price & Availability of FSCQ1465RT

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X